
Prophet Zero

Cyber Threat Intelligence Platform

Outline

● Problem Statement

● Our Solution

● Analysis Approach

● Web Platform

● Analysis of Results

● Conclusion

Proper
Rusty
Open
Predictions of
Hackers with
Examination
Telemetry

Our
Platform

Who are we?

● Carleton Computer Science Students

● Undergrad, masters, and PhD

Our Problem

● Typical CTI focuses on IoCs and

TTPs

● Would it help analysts identify

threats if we created a platform

that described malware behavior

● IoCs can be easily changed by

attackers

● Techniques and behaviors can not

Our Problem

● Events and Sources of Data

● Data available is often limiting

Our Solution

● Create a queryable CTI platform

● Include behaviors in addition to IoCs

● Use dynamic and static analysis techniques

● Augment our analysis with machine learning

techniques

Our
Solution

1 Malware analysis

pipeline

2 Web Application

Data Source:

● Used the Zoo malware repo

● Focused on Win32 samples, but our

solution could handle samples for any

machine/architecture

Static Analysis

● Used radare2, ioc_extract, pefile

● Extracted file info

Imports

IoCs

Commands and File Names

Malware Sandbox - PANDA

● Whole system reverse engineering
● Built on QEMU
● Repeatable
● Architecture Neutral
● Open-source
● Configurable

Malware Sandbox

Record
Whole
System

Execution

Run
Replay

Static
Analysis

Select and
Create
Plugins

Malware
Sample

Analyze Data

Telemetry

Classification

Orchestrated
Windows VM

Extending Panda

● Extended the functionality of the plugin

originally created by malrec

● Collects all system calls

○ Attaches hooks on syscall instructions

○ reads syscall number and args from

registers

● Stripped all arguments and only used the

sequence of calls

Malware Sandbox - Data Collected

● Collected unformatted data from the entire system

● Extracted data for target process and related

processes from it

Process Information

Files Accessed/Modified

Network Data

System Calls

Screenshots

Classifying Malware

● Used the following dataset to train a
classifier: octatak - malware_api_class
○ Consists of sequences of API calls
○ 9 Classes - Spyware, Downloader, Trojan,

Worms, Adware, Dropper, Virus Backdoor
● Reduced sequences to contain only NT

syscalls

createthread ntallocatevirtualmemory ntfreevirtualmemory ntallocatevirtualmemory getfiletype
getfiletype getfiletype ntallocatevirtualmemory ntallocatevirtualmemory ntallocatevirtualmemory
ldrgetdllhandle ldrgetprocedureaddress ntallocatevirtualmemory setunhandledexceptionfilter
loadstringa regopenkeyexa regopenkeyexa regclosekey setunhandledexceptionfilter ntterminateprocess
ntterminateprocess ntclose ntclose ldrunloaddll ntopenkey ntqueryvaluekey ntclose ntclose ntclose
ntclose ntterminateprocess

An Example
Sequence

https://github.com/ocatak/malware_api_class

Classification Method

● 1D Convolutional Neural Network
○ > 95% accuracy on validation data

● Fed sequences from live samples into classifier

Example of the selected Network
Architecture. Image Source: [1]

Clustering to identify similar samples

● Hybrid Features
○ Combination of static and dynamic features

● K-Means algorithm

Image Source: [2]

Wrap up:

● We now have:
○ Dynamic Features:

■ System Calls, File Accesses,

Network Traffic, Process

Information, Libraries,

Screenshots of the malware

running

○ Static Features:

■ IoCs, Strings, File Info

A Retrospective

Web Platform

Our Stack:

● MongoDB NoSQL database stores behavioural IoC information

● Rust back end exposes a RESTful API into the database
○ Rust type system + memory model → memory-safe and efficient code

○ Asynchronous rocket.rs webserver with the tokio runtime

○ MongoDB Rust driver to perform queries on malware data

● Quasar front end to view malware data
○ Sleek and modern design

○ Supports filtering malware by various IoCs (touched files, libraries, etc.)

A Discussion of
Results

Were we able to achieve our goals?

● We created a malware sandbox
○ Performed Hybrid Analysis

○ Integrated ML

● We created a web platform to display our data

Yes, but there is still future work to be done

Lessons Learned

● Time

● Datasets

● Limited Sources of Data

Conclusion

● Future work

○ Augmentation of data sources

○ Refinement of Presentation

● Idea is solid

References:
[1] DeepSF: Deep Convolutional Neural Network for Mapping Protein Sequences to Folds - Scientific Figure on
ResearchGate. Available from:
https://www.researchgate.net/figure/The-architecture-of-1D-deep-convolutional-neural-network-for-fold-classif
ication-The_fig1_327213391 [accessed 16 Dec, 2021]

[2] https://towardsdatascience.com/k-means-a-complete-introduction-1702af9cd8c

Thanks
For Listening!

